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1. INTRODUCTION 

MOVING boundary problems have few exact analytical solu- 
tions. The most famous one was expressed by Neumann in 
the previous century. We will briefly report his results [I]. 

The problem considers a semi-infinite body of phase- 
change material extending from x = 0 to a. The initial tem- 
perature T is assumed to be uniform and higher than the 
solidification temperature r,. Dirichlet’s condition is applied 
to the fixed boundary at a temperature T,, (Tu < T,). Crys- 
tallization is observed and if one assumes only conductive 
heat transfer in both phases, the position of the boundary 
layer may be expressed by 

s = 2K,,‘(a, t). (1) 

The temperature profiles in the solid and the liquid phases 
are 

0 < s i s(t) 

x > s(t) (3) 

where Khl is a function of three dimensionless parameters : 

St<, = ylc,(T~ -_a 
P I L 

Stefan number (ratio of the sensible heat in the solid phase 
to the latent heat released by crystallization) ; 

~+!‘s:::,“~~ 
IIC 0 

ratio of the sensible heat in the liquid phase to the sensible 
heat in the solid phase ; 

square root of the ratio of the thermal diffusivities. The 
solution of the transcendent equation is KN 

c s; e- n;x’ 4 K, jR 

erf (& ) erfc (KNz) s( stc (4) 

Equation (4) can be solved numerically but the solution can 
be fairly difficult to obtain when the function erfc (K,cc) is 
near zero. 

For various boundary conditions or various geometries, it 
is useful to have approximate solutions. Several methods 
were developed for the case where the initial overheating is 
zero (4 = 0). In this particular case, the thermal properties 
of the liquid phase do not appear in the solution. 

The quasi-steady approximation [2] assumes a linear pro- 
file of the temperature in the solid region and is only valid 
for very small Stefan numbers. For larger Stefan numbers, 
higher order polynomial approximations have to be used. 
The coefficients are determined so as to satisfy the boundary 
conditions. The heat equation should also be satisfied either 
in its integral form [3] or at a number of discrete points [3 

51. 
For small but non-negligible Stefan numbers, perturbation 

methods also yield good results [6. 71. 
To find approximate solutions for the case 4 # 0, it is 

necessary to make assumptions on temperature profiles in 
both phases [&I I]. The solution is seldom simple and it is 
often preferable to use numerical methods [l2], which allow 
for instance, the practical choice of the initial conditions. 

In the present paper, we intend to show how a correct 
choice of an approximate solution may yield accurate results. 
In the case of Neumann’s problem, the approximate solution 
has a very simple form and may easily be compared to the 
exact one. 

2. STATEMENT OF THE PROBLEM 

The equations for Neumann’s problem are well known. 

. Solid phase 

0 < X < s(t), (5) 
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NOMENCLATURE 

a thermal diffusivity [m” S- ‘1 
c specific heat [J kg- ’ K- ‘1 
d thermal wave penetration depth [ml 
L latent heat of crystallization [J kg- ‘1 

; 
polynomial exponent (liquid phase) 
first-order approximation function 
crystallization front location [m] s 

SP Stefan number 
t time [s] 
T temperature rC] 

Ti initial temperature [“C] 

To temperature at the fixed boundary [“C] 

T, phase-change temperature [“Cl 
X space coordinate variable [ml. 

Greek symbols 
a square root of diffusivities ratio 

& relative error 
A thermal conductivity ]m K] 

density [kg m- ‘1 

: sensible heat ratio. 

Functions 
erf error function 
erfc complementary error function. 

Subscripts 
1 solid phase 
2 liquid phase 
A present approximate solution 
G Goodman’s approximate solution [3] 
N Neumann’s exact solution 111 
s Solomon’s approximate solution [ 121. 

l Liquid phase 

S(t) < co. 
dT2 aZT2 
-=a2--1 
at ax; (6) 

The boundary conditions are, for both phases : 

T,Ix=,T- = Tc (8) 

TAr-_,,+ = T, (9) 

x = 0, T,(.=, = T,. (10) 

Let d be the penetration depth of the thermal wave; we can 
write 

X=d, TZl,,=d= Ti (11) 

aT* 
f3X 

= 0. 
r-d 

(12) 

The initial conditions are 

T2(x, t = 0) = T, (13) 

s(t = 0) = 0 (14) 

d(r = 0) = 0. (15) 

The accuracy of the solution depends on the choice of the 
temperature profiles in each phase; we assume 

T, = T,+A(t)(w-s)+B(r)(x-s)* (16) 

T2 = T,-(T,-T,) ‘2 n. ( 1 (17) 

Both equations are compatible with expressions (S), (9), (1 l), 
(12) if 0 z 1, and (13). 

Suppose the heat equation (5) is valid for the point x = s, 
we obtain 

2Bu, = -AAS. (18) 

Boundary condition (10) yields 

To = -As+Bs’+T,. (19) 

From equations (18) and (19) we obtain the expressions of 
A and B as functions of s and S 

(20) 

B(t) = _ 2&si!. 

( ) 
(21) 

2a,s 1+ “s 
2a, 

Suppose the heat equation for the liquid, equation (6), is 
valid for the point x = s, we obtain a differential equation 

(n - l)a2 
.? = (d-s). (22) 

Boundary condition (7) at the interface gives another differ- 
ential equation 

i,(T,- To) _-.___-- _1 n(T-TJ 
~- = p,Li z d-s (23) 

Eliminating (d-s) between equations (22) and (23) yields 

Introducing the dimensionless parameters 4 and Sle, we 
obtain 

(25) 

Using the initial condition (14), equation (25) is easily solved. 
The solution is 

s(t) = 2KJ(a,t) (26) 

with 

We remark that solution (26) is formally identical to 
the exact solution (1). For the case # = 0, this result has 
been previously obtained by Goodman [3] and gives reliable 
values 

___ < 2% 
KN 

for 0 < Sle < 2 

with 

Kc, = ;&2(4(l+?SW)). (28) 
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For the case 4 # 0, the choice of the exponent n is of great 

importance. Expanding em “” and erfc (Ka) in series and 
keeping the first-order terms yields 

eeK”’ = I + O(K*a*) (29) 

2 
erfc (KG() = I - 

Jr 
Kx+O(K2a*). (30) 

Substituting equations (29) and (30) into equation (4) and 
comparing equation (4) with equation (25) gives 

Substituting equation (31) into equation (27), we obtain an 
approximate solution 

s(t) = 2&‘(u, t) (32) 

with 

K, is easily obtained from the sequence 

(34) 

with the initial value K,, = Kd (equation (28)). 

3. RESULTS AND DISCUSSIONS 

For the particular case c( = I, we reported the approximate 

value Ks given by Solomon [ 121 

Ks = ~(2&e)/l-(0.21 +&OS1 -0.169Sfe))(0.5642Str)H) 

Table I. 

9 
SIP 0 0.1 0.5 1 

0.1568 0.1552 0.1488 
0.05 0.38 0.38 0.27 

0 -0.39 -1.34 

0.2200 0.2166 0.2037 
0.1 0.70 0.69 0.59 

0.04 -0.55 - I .72 

0.4648 0.4461 0.3834 
0.5 2.08 I .90 1.46 

-0.11 -1.01 -3.86 

0.6200 0.5827 0.4698 
I 2.42 2.21 1.62 

0 -1.11 -7.53 

0.1415 KN 
0.28 CA (%) 

-0.21 Es (%) 

0.1891 K, 

0.48 aA (%) 
-0.48 as (%) 

0.3246 Ku 

1.05 &A WI 
-0.37 Eg: (%) 

0.3778 K, 
1.16 CA (%) 

-5.13 Es (%) 

cA = (KN-K,,)/KN,cs = (KN-KS)/KN. 
Comparison between approximate solution (equation 

(34)) and Neumann’s solution. 
Comparison between Solomon’s approximation [ 121 and 

Neumann’s solution. 
ForOiSre<l,cc=l,O<~< I 

FIG. I. Relative error aA = (K,,- K,)/X;, vs 4 for OL = I, 
0 < 4 < 6,0 < Ste < 2. 

with 

B= _oP3mL _0,15S& 
I +0.69qb"' 

only valid for 0 i 4 < I and 0 < Sre < I .5 and compared it, 
together with our approximate solution K,,, to the exact 
solution KN (Table I). Equation (34) gives a better accuracy 
for higher values of 4 and Ste. 

We tested our results on a wider range of parameters 
(4 > 0 and 0 < Ste < 2) for three values of c( (G( = I (Fig. I), 
0.3 (Fig. 2), 3 (Fig. 3)). The relative error aA never exceeds 
3% and for large values of 4, the approximate solution 
converges to the exact solution, e.g. for r = 0.3, 4 > 2, 
0 < ste < 2, EA < 0. I %. 

We compared temperature profiles for a very pessimistic 
case (a = 3, 4 = I, Sfe = I, K, = 0.5027, K,, = 0.5131, 
t:A = 2.07%) with boundary and initial conditions: T, = 0, 
T,, = -2O”C, T, = 20°C (Fig. 4). We observed these profiles 
when the boundary reached the value s = 0.05 (thus with 
different times f,, and tN). Calculations show that to obtain 
a correct profile for the liquid phase a very high value of n 
is needed (n = 319) and the value of d is also very large 
(d = 3.406). In reality, T, is reached. because of the high 
order of the polynomial, for d #O.lOO (r,%(d= 0.100, 
I) = 19.83 and T,(d = 0.100, fN) = 19.98) the coincidence 

I 

: 

0 1 2 3 4 5 6 

FIG. 2. Relative error c,, = (KA- KN)/KN vs Q for a = 0.3, 
0 < r#J < 6.0 < ste < 2. 
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FIG. 3. Relative error E,, = (KA-KN)/KN vs 4 for 51 = 3, 
0 < 4 < 10, 0 < Ste < 2. 

between the approximate and the exact temperature profiles 
is quite good, especially in the solid region (Fig. 4). 

4. CONCLUSION 

Using polynomial approximations for the temperature 
profiles in the solid and liquid phases, equation (34) yields a 
very precise approximate solution of Neumann’s problem. 
The constant KA is calculated with an accuracy better than 
3% for 0 < Ste < 2,0.3 < 01 < 3 and I$ > 0. For large values 
of 4, the convergence is excellent. The temperature profiles 
obtained with this method are also very satisfactory. 

All calculations can be made very easily on a pocket cal- 
culator and should provide fairly good approximations for 
engineering calculations. 
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